HADAMARD PRODUCTS IN THE CLASSES OF K-UNIFORMLY CONVEX FUNCTIONS

Agnieszka WIŚNIOWSKA, Politechnika Rzeszowska

Let A be the class of functions analytic in the unit disk U and normalized by f(0) = f'(0) - 1 = 0. For $0 \le k < \infty$ define the class k - UCV of k-uniformly convex functions to be the set of functions $f \in A$ with the property that

$$\operatorname{Re}\left\{1+\frac{zf''(z)}{f'(z)}\right\}>k\left.\left|\frac{zf''(z)}{f'(z)}\right|,\ z\in U.$$

In particular cases, for k=0 we obtain the well known class of convex univalent functions, and for k=1 – the class of uniformly convex functions due to Goodman in 1991.

The concept of k-uniform convexity was introduced by S. Kanas and A. Wiśniowska in 1997. The classes k-UCV have a natural geometric interpretation in the sense that $f \in k-UCV$ if and only if the image of every circular arc in U with center ζ , where $|\zeta| \leq k$, is convex.

In this paper some convolution results for the classes k-UCV are given. Moreover certain properties concerning integral operators and neighbourhoods of k-uniformly convex functions are studied.